GA

GA-C

Translate

Recent Most Popular

Monday, 26 March 2018

Is WiFi with WBA and WiFi Alliance sufficiently focused to come for 5G?



This is a discussion with industry experts Oscar Bexell.
Oscars Linkedin profile is - https://www.linkedin.com/in/oscar-bexell-9462922/

Q. 5G still seams to be dimensionless, where do you see Wi-Fi fitting with 5G?

A. Residential and for enterprises (how long depends on how well 11ax plays out). In the longer run, and with new types of gadgets coming in, I don't think anything LBT/CS fits the bill. CBRS will take off in the US and take the indoor enterprise space. In China the MNOs have been doing this with small cells for quite some time. In other countries there will be other approaches. Different markets will also take longer/shorter time to adopt. For many Wi-Fi system integrators and vendors, there will be market shares to take with CBRS.

Q. Wi-Fi in current wireless access technology space is on hype or settled, why?

A. I only follow them from a distance. I like the NGH initiative. I think they should get into CBRS+4G/5G. That's where the MSOs and many service providers will be able to take footprints over time. Build ecosystem and drive standardization/harmonization.

Q.How relevant Wi-Fi Alliance has been so far, and what you think about its future role should be?

A.It's probably the main factor behind the success of Wi-Fi. I see their work as critical, both for new standards, but maybe even more for driving interoperability work and harmonization of frequencies. They should keep on doing exactly this, but I also think they should drive CBRS spectrum harmonization in more markets and the ecosystems around this. That is the future for enterprise/venue in-building networks.

Q. Wi-Fi access would be catching what kind of segments of IOT?

A.It's already used a lot, especially in in-home deployments and as backhaul to many Bluetooth/Zigbee/Z-wave/gateway applications. It will play a very big role in the coming years as it's already present in most environments. I think mainly as backhaul. I'm also looking forward to see how 802.11ah takes off. I see that mainly as an in-home competitor to Bluetooth 5.0 and Zigbee.

Q.Do you feel for any need of collaboration or association for Wi-Fi ecosystem development with a fresh view (may be like use case basis/software defined/cloud based)?

A. N/A



Saturday, 24 March 2018

HEW - WiFi 802.11ax gearing up for ecosystem gain


802.11ax, also called High-Efficiency Wireless (HEW), has the challenging goal of improving the average throughput per user by a factor of at least 4X in dense user environments. This new standard focuses on implementing mechanisms to serve more users a consistent and reliable stream of data (average throughput) in the presence of many other users.

Looking beyond the raw link speeds of 802.11ac, this new standard implements several mechanisms to serve more users consistent and reliable data throughput in crowded wireless environments.

High-Efficiency Wireless includes the following key features:

  • Backwards compatible with 802.11a/b/g/n/ac
  • Increase 4X the average throughput per user in high-density scenarios, such as train stations, airports and stadiums. -Data rates and channel widths similar to 802.11ac, with the exception of new Modulation and Coding Sets (MCS 10 and 11) with 1024-QAM.
  • Specified for downlink and uplink multi-user operation by means of MU-MIMO and Orthogonal Frequency Division Multiple Access (OFDMA) technology.
  • Larger OFDM FFT sizes (4x larger), narrower subcarrier spacing (4X closer), and longer symbol time (4X) for improved robustness and performance in multipath fading environments and outdoors.
  • Improved traffic flow and channel access
  • Better power management for longer battery life


802.11ax provides greater Wi-Fi speed and does it through making capacity improvements in congested network environments, by supporting more users in dense networks and making more efficient use of spectrum. the difference between 802.11ax and previous Wi-Fi generations may not be very noticeable for a residential Wi-Fi user, compared to the improvements in a dense network with many users. The goal is to increase the data rate in a congested environment by 4x or more."
802.11ax also offers significant power usage improvements. Qualcomm, for instance, claims that its WCN3998 chipset reduces Wi-Fi power consumption by up to 67% compared to 802.11ac Wave 2.
The Wi-Fi technology so far has been based on one-on-one device-to-access point conversations. 802.11ax changes that to multi-user simultaneous support. The capacity increases will make for a better user experience, with 10x more users able to be supported.
802.11ac with MU-MIMO hasn't achieved its full commercial deployment potential and was based on beam-steering. In contrast, 802.11ax makes Wi-Fi more like cellular through the use of OFDM, and scheduling. The technology comes in closer to what LTE is today in competition, also same time cellular is moving to 5G, where also it [802.11ax] usher to write place.
Testing and standardization of 802.11ax
Testing 802.11ax offers up some unique challenges that Wi-Fi testing hasn't previously had to navigate. One of those is synchronization of devices in the uplink using the AP, in order to avoid interference. A trigger frame is sent from the AP to the devices and they must respond for coordination of timing, frequency and power levels. Rohde & Schwarz gives some of the basics of uplink accuracy testing.
802.11ax along with 802.11ac and previous generations, at both 2.4 and 5 GHz, means that test times "could go up dramatically."
Meanwhile, the path to a final standard for 802.11ax has been a rocky one, and the work is still ongoing. As Intel's Dan Artisu, vice president of its client computing group and GM of Intel's connected home division, noted, the standards work continues and the draft which is ultimately adopted — and on which certification is based — may differ enough from earlier drafts that product interoperability could be an issue. The next draft is expected to be voted on mid-2018.
Some in the industry believe that due to the additional complexity of the 802.11ax standard, it is important to get 802.11ax chipsets into the hands of engineers sooner rather than later to help them build devices around the new features. If an OEM does decide to hold back, their first devices integrating an 802.11ax chipset may come 6 to 18 months behind that of the competition. the question for OEMs is whether they should wait until the standard is more stable before adopting an 802.11ax-ready solution. A wait-and-see approach could arguably result in a longer lead time, and some OEMs may lose out to those who are proactive in getting their designs ready for the full version of the standard.


Huawei Showcased Innovations in Intelligent Network Maintenance at the MWC 2018

From Huawei information 
At the Mobile World Congress (MWC) 2018, Huawei showcased multiple innovations in intelligent network maintenance, including risk prediction and prevention, fault self-healing, and assistance for intelligent root cause locating. To address various network maintenance challenges, Huawei adopts emerging digital technologies, opening a new era for intelligent maintenance. Huawei is dedicated to helping operators build zero-outage robust networks.
Huawei robust network service solution applies big data analysis, artificial intelligence (AI), and other emerging technologies to network maintenance. This innovative solution predicts and helps prevent some faults. When a fault occurs, the solution provides self-healing and intelligent aided analysis to rapidly identify and rectify the root cause, minimizing the impact on services. Machine learning is used to process repeated and massive data analysis and greatly improves O&M efficiency. This solution intelligently analyzes various historical and live network data to identify risks from multiple dimensions, including hardware sub-health, software running status, network protection, network connection, redundancy reliability, resources and capacity, and service risks. Additionally, special service solutions can be customized based on Huawei's global maintenance knowledge base.
  • This pioneering solution uses algorithms extracted from fault models, including the feature preserving projection analysis algorithm, multi-indicator association analysis algorithm, automatic feature mining algorithm, and intelligent partitioning algorithm. These algorithms are used to complete the practice of multiple prediction and prevention subjects at the device layer, network layer, and service layer. The accuracy of predictions is over 85%, and the efficiency of troubleshooting is improved by over 60%.
  • The solution uses offline training and online learning engines to constantly optimize prediction models and algorithms and continue enhancing a comprehensive prediction and prevention system.
  • The solution implements an intelligent O&M system based on big data technologies, improving O&M and promoting network innovation. It accumulates extensive data on fault recovery experience and network data, to improve predictive and preventive maintenance and network self-healing. In addition, it analyzes the root causes of network issues, helping to constant product improvement.
Huawei's robust network service solution has been successfully implemented and explored in multiple global projects. Through joint innovation, Huawei worked with China Mobile Hainan and used this solution to build an intelligent O&M system based on self-learning to maximize the value of network big data and prioritize preventive maintenance. This project received the Editors' Choice Award 2017 (Mobile Network Innovation Award) from the People's Posts and Telecommunications News Agency in China. Huawei will explore risk prediction and prevention in more scenarios, including 5G, IoT, home broadband, and enterprise customers, and will continue enhancing capabilities in data collection and analysis efficiency, algorithm optimization, and scenario-based fault modeling.
In the future interconnected digital world, robust networks will be the basis for digital service success and a good service experience. Huawei's successful experience in developing innovations for intelligent maintenance accelerates breakthroughs in and applications of key technologies for intelligent O&M, provides a reference for the future construction of intelligent network maintenance systems.

Tuesday, 20 March 2018

WBA pushing on seamless, secure and enhanced coverage next gen WiFi hotspot.



By Tiago Rodrigues, General Manager of the Wireless Broadband Alliance (WBA)
This year at Mobile World Congress (MWC) Barcelona a group of companies, many of them members of the Wireless Broadband Alliance (WBA) together with GSMA, Fira Barcelona and City of Barcelona developed a pilot on Wi-Fi Roaming across a series of hotspots in Barcelona using Passpoint technology and WRIX standards to deliver a seamless and secure roaming service between different networks and service providers.
Project Goals
The goal of this project was to accelerate market understanding and adoption of Passpoint technology, network interoperability and Wi-Fi roaming services based on WRIX standards, creating what WBA defines as Next Generation Hotspot (NGH). This type of project falls in to the Testing and Trials programs from WBA to accelerate business opportunities and technology adoption – something WBA has been doing since 2008.
Over 2200 hotspots were made live; from Fira Gan Via and Fira Montjuic where GSMA MWC is hosted, over 300 APs across Barcelona, in some of the key tourist locations, like the Ramblas, Plaza Catalunya, Passeig de Gràcia, train stations among many other sites in the City and in El Prat Airport.
Overall the plan was to setup a wide coverage of a Wi-Fi/Passpoint/NGH network across MWC Fira Exhibition Center, transportation hubs (airport and train stations) and outdoor coverage in City center. In all these locations Passpoint technology was activated and a specific SSID was set up for the project to deliver to the end users a cellular like experience over the Wi-Fi networks, full automatic connection to the Wi-Fi hotspots – without any manual intervention from the end users.
Who was involved?
Cisco Systems played the role of major technology provider and was supported by Boingo Wireless, Unitronics, CellNex and Think Smarter for all the configurations and testing. All the hotspots where interconnected using the concept of a central roaming Hub facilitated by Boingo Wireless, BSG Wireless and Accuris-Neworks.
Additionally WBA invited service providers with commercial NGH/Passpoint services to join the project and provide roaming to their customers during the duration of MWC Barcelona. Mobile operators, cable operators, ISPs, pure Wi-Fi providers and users from enterprises that already have Passpoint deployed in their offices; all these companies came together and used all these hotspots across Barcelona for their benefit of their customers as if they were at their home network or office.
WBA and GSMA working together
This is not the first time the WBA has promoted a NGH/Passpoint network during major events like MWC Barcelona but this time four major improvements were achieved:
1. Increased coverage beyond the Fira Exhibion Center. The project included private (enterprise Wi-Fi by Fira Barcelona), Municipal Wi-Fi (by City of Barcelona) and Airport Wi-Fi (by AENA, state own company to manage the Spanish airports)
2. Mobilize enterprises users from companies that have already deployed Passpoint at their offices and headquarters, several companies got involved either directly or through iPASS services.
3. Only involved operators / carriers with Passpoint/NGH services commercially available, like AT&T, Charter Communications, Softbank or Boingo Wireless. This decision removed any on-boarding obstacles making a truly seamless experience to all users, just like cellular.
4. Generated anonymized analytics from the multiple hotspots to provide information to all venue owners participating on the project. Think Smart developed real time analytics, including flows and volumes of devices connected by location and flows of movement of those devices across and within the multiples hotspots.
Our thanks to all those who participated.
Over 25 companies participated in this project and WBA had the honor to coordinate this initiative over the last 4 months and work with some of the best industry professionals and Wi-Fi experts. Tremendous amount of data have come out of this initiative but we will leave it to project participants to provide their case studies and reports, so stay tuned.
Project participants: GSMA, WBA, Cisco, Boingo Wireless, City of Barcelona, Fira Barcelona, Unitronics, Cellnex, Think Smarter, BSG Wireless, Accuris Networks, AT&T, T-Mobile US, Sprint, Mobily, Telecom26, Softbank, Shaw Communications, Spectrum (Charter Communications), ER Telecom, iPass and several enterprises with their employees.
Over 50 people were involved on the project and we thank you all for making this happen, but I would like to point out my gratitude to Jordi Cirera and Toni Carol Vilanova (from the City of Barcelona), Alex Williams and Jon France (from GSMA), Carlos Sanchez and Xavier Michavila Asensio (from Fira Barcelona), Mir Alami and Matt MacPherson (from Cisco), Derek Peterson and Kishore Raja (from Bongo Wireless), Antoni Montis (Unitronics), Blaz Vavpetic (from iPASS), Pedro Salvatella (Cellnex) and Brendan O'Brien (from Think Smarter).
Making the vision a reality
This initiative represents somehow my vision for Public Wi-Fi with multiple venue owners working together from private, public and municipal sectors alongside of all types of operators/carriers and enterprise users – Wi-Fi is seamless, interoperable, secure and widely available – an entire ecosystem coming together and WBA and its member are making this vision a reality.
Looking forward for MWC 2019 and to take this initiative to the next level with more coverage, more services and more end users – interested in these type of initiatives? Do you have ideas to make it more valuable? You are welcome and let´s make Wi-Fi seamless, secure and interoperable across the entire ecosystem.

Monday, 12 March 2018

Massive MIMO advancement trial, makes progress towards 5G

Courtsy ETT Telecom....


Verizon, Ericsson and Qualcomm Tech complete Massive MIMO advancement trial, makes progress towards 5G


US based telco Verizon, equipment manufacturer Ericsson and chipmaker Qualcomm's subsidiary, Qualcomm Technologies claim that they have completed the first ever FDD Massive Mimo trial with a fully compatible customer service which will build the momentum from the deployment of FDD (Frequency Division Duplexing) Massive MIMO (Multiple Input - Multiple Output) on Verizon’s wireless network in Irvine, California.

In this trial, the three companies used the latest Ericsson Massive MIMO software and hardware on Verizon’s network, along with a mobile test device powered by the Qualcomm Snapdragon 845 Mobile Platform with X20 LTE using TM9 (Transmission Mode 9), which is an enhancement for consumer devices that will make them fully compatible with Massive MIMO.


“Advanced Antenna Systems and Massive MIMO are key technology enablers for 5G, and 4G LTE service providers and end users will also benefit from the superior capacity and network performance these technologies enable. The latest trial is another important step in the collaboration we have with Verizon and Qualcomm Technologies to further evolve 4G and prepare the network for 5G,” said Niklas Heuveldop, Head of Market Area North America, Ericsson.

5G development moving fast than anticipated....


Recently 3GPP, the telecom industry standards body, has ratified the Non-Standalone (NSA) 5G New Radio (NR) specification, half a year earlier than expected. The specification for the non-standalone 5G NR (new radio) standard is now expected to form the basis of commercial 5G products by vendors like Ericsson, Huawei, Nokia, LG and Qualcomm among others.

TM9 Functionality


To realize the gains of Massive MIMO, both the networks and the devices need to support new TM9 functionality that leverages advanced beamforming schemes between the network equipment and the mobile device to raise network spectral efficiency and customer speeds.

Nice summary of eMTC, NB-IOT and EC-GSM-IOT in respective of their objectives , changes in 3GPP Release 13 and 14.

Nice summary of eMTC, NB-IOT and EC-GSM-IOT in respective of their objectives , changes in 3GPP Release 13 and 14.

Saturday, 10 March 2018

Open vRAN initiatives.

Vodafone has been working on software-defined RAN for the past year, and it's now contributing the project to TIP. Vodafone and Intel will lead the openRAN group, which will develop RAN technologies based on General Purpose Processing Platforms (GPPP) and disaggregated software.
"This is the opening of a system that runs radio as a software on top of general purpose processes and interworks with independent radio," said Santiago Tenorio, head of networks at Vodafone Group. The project will work to reduce the costs associated with building mobile networks and make it easier for smaller vendors to enter the market.
Also  open RAN groups such as the xRAN Foundation, a consortium formed in 2016 to develop and promote the virtualization of the RAN and the use of open standards. 

And now with all above being there Cisco announced at MWC 2018 that it is to lead Open vRAN initiatives.

The new Cisco group has some of the same members as xRAN and OpenRAN, including Intel and Mavenir. Other vendors involved in Cisco's Open vRAN initiative include AltiostarAricent, Phazr, Red Hat, and Tech Mahindra. 

Interesting to note here that  India's Reliance Jio has also joined Open vRAN group.  While many functions of a mobile network are being virtualized, the radio access network is "one area that has been completely neglected," said Reliance Jio's Tareq Amin, SVP, technology development and automation. 

Also when asked if any U.S. telecom operators are expected to join, Jonathan Davidson, SVP and GM of service provider networking at Cisco said, "I think they are very open to the disaggregated approach and moving to more cloud native ecosystems. I imagine they will get behind it."
The goal of Open vRAN is to assemble an open and modular RAN architecture, based on General Purpose Processing Platforms (GPPP) and disaggregated software, that will support different use cases. It will develop this new architecture over the next few months.
    


Friday, 9 March 2018

Strategy : Operator's and Service Provider's interests on vendor space through open communities is remarkable

As the open communities are flourishing around, whether it be hardware or software solutions or platforms or much buzzing term framework. a much needed for the service providers or operators to cope with the disruptive environments for technological advance and selection.

As you can find the flooded memberships and active involvement of service providers and operators on these opensource communities. Recently verizon joined the Linux foundation ONAP and almost made it universally accepted platform for future network management and orchestration, Reliance jio and many others including, no doubt, the ECOMP founder AT&T is already there. Same is true with many other such communities like ONF, TIP . Recently, as per the news from MWC 2018 Cisco issued a major announcement at MWC - Open vRAN, which brings together innovators including Reliance Jio, Intel, Redhat and Mavenir. Open vRAN refers to a shift in base station architecture away from proprietary functions running on vendor-specific base station hardware to open tech for the mobile radio access network.  

Remarkably looking Reliance jio's active interest on open communities and technological insight exploration is unveiling the operators interest into vendor space. As this could be, if not yet, may be in future, but a much needed strategy for them to cope with the disruptive trends in technological advancements. 

It will help the operators or service providers to better decide their road map and relevantly impact the technological horizon as per their need and requirements. 

Open communities also provide a low cost involvement into technology development with required pace and much required coordination too. Also there is much scope to get hands on and thoroughly decide and coordinates on issues like for interoperability and compliance's.


Saurabh Verma
Consultant & Founder
Fundarc Communication (xgnlab)
Noida, India - 201301
M:7838962939/9654235169
saurabhverma@xgnlab.com
www.xgnlab.com